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Abstrac t  

Our problem is to build a relational theory of space, i.e., one according to which space is 
a sort of network of relations among things. We take the notions of concrete thing and of 
action of one thing upon another as undefined, or rather as defined in another context. 
We define the notion of interposition between things in terms of the previous notions. We 
then define the separation between two things as the set of things interposed between them. 
The collection of things equipped with the separation function is cailed the thing space-a 
representation of ordinary space sufficient for philosophical purposes but not for physics. 
The next step is to define a topology for the thing space: This is done with the help of 
the separation function. The set of things together with this topology is called the physical 
space. We then define the family of balls lying between any two things and postulate that it 
satisfies Huntington's axioms for solid geometry. By adding a few more natural assump- 
tions we render physical space a three-dimensional manifold, which is what current physical 
theories require. We abstain from any metrical considerations, not only because these 
would require building space-time, but also because our problem was not to describe space 
but to explain how it comes about. Nevertheless our construction of space involves the 
notions of event and of event composition, and the latter allows one to define a time 
order of events, which in turn is required to define the notion of action of one thing upon 
another. The upshot is a fulI-fledged relational and objectivistic theory of space based on 
the assumption that the physical world is constituted by changing things. 

1. In troduct ion 

The aim of  this paper  is to ske tch  a relational t heo ry  of  physical  space. 
In any relat ional ,  as opposed  to  an absolute  t heo ry ,  space is n o t  assumed to  

exist by itself,  i ndependen t l y  of  its con ten t s .  Ins tead,  a re la t ional  theory  of  
space regards the  la t ter  as a cer tain s t ruc ture  o f  the entire col lect ion of  enti- 
ties o f  a fundamenta l  kind.  These ent i t ies  are usually taken to be concre te  

t h i n g s - s u c h  as part icles  or f i e l d s - o r  events ,  or b o t h .  
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The theory to be sketched below takes two notions as undefined: those 
of thing, or concrete object, and property of a thing. The concepts of state 
of a thing, and change of state (or event) are also used but are obtained by 
definition. These four notions are elucidated elsewhere (Bunge, 1974, Bunge, 
I977, and Bunge and Sangalli, i977). In the present paper an extremely brief 
characterization of these notions will have to suffice. 

A fifth notion we need is that of the history of a thing in the state space 
of the latter. This concept allows one to define the action or effect of one 
thing upon another, namely, as the change in the history of the patient 
brought about by the agent. A further defined concept is that of time order, 
characterized in terms of the concept of event composition: If two events 
compose in a given order to form a third event then the first precedes the 
second. The first three sections of the paper are devoted to a presentation 
of the six above-mentioned key concepts. 

In Section 4 we introduce our first and basic, though not primitive, geo- 
metric notion, namely, that of betweenness or separation. Roughly, a thing 
b interposes between things a and e if an action originating in a (or in c) 
arrives at b before it does at c (or at a). In Section 5 we define the separa- 
tion between two things as the collection of things interposed between 
the given things. The separation function allows us in Section 6 to 
define a topology for the set of things. We postulate that the set of things 
equipped with that topology represents physical space. 

The space of things is assigned further properties in Section 7. Here we 
postulate that the separation between any two things is a Euclidean ball. We 
also assume that these Euclidean balls obey Huntington's postulates for 
ordinary three-dimensional Euclidean geometry. This allows us to prove that 
the set of things has a covering formed by Euclidean balls and, finally, that 
the space representing physical space is connected and separable as well as 
three dimensional. In short, we prove that the space of things is a three- 
dimensional connected and metrizable manifold. 

The upshot of our investigation is that it is possible to define physical space 
with the help of the general concepts of thing and change. The resulting space 
is a three-dimensional manifold. This is of course the minimal structure called 
for by contemporary physics, from quantum mechanics to general relativity. 

The present investigation does not extend to space-time but it is generaliz- 
able to it. Surely a specification of any metric properties calls for the blending 
of space with time. But in this paper we are concerned with the gross structure 
not with the details of space. Ours is not the specific scientific problem of the 
exact geometry of space(time) but rather the foundational and philosophical 
problem What is space? 

2. Things 

We assume that the world is constituted by things such as elementary part- 
icles and fields and the systems composed thereof. Obviously, since we want to 
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build a concept of  space in terms of  the concept of a thing, we cannot define 
the latter as whatever exists in space. Things must then be characterized by 
properties other than spatiotemporal properties. 

We submit that the basic property of  a thing is that it can associate with 
other things to form complex things. This association we call physical  sum 
and construe as a binary operation 4- in the set T of  all things. That is, i f x  
and y are in T, then x 4- y = z is a third th ing-one  with parts x and y. More 
explicitly, we define the part-whole relation E by 

I f x ,  y E T, then x r- y = dfX -;cy = y  

The set T of  things is assumed to be closed under physical sum, which is 
taken to be associative, commutative, and ide .mpotent. That is, i f x ,y ,  z are 
in T, then x + (3, + z) = (x + y )  + z, x + y = y + x, and x + x = x. We also 
postulate that every nonempty set S -~ T of  things has a supremum or 1.u.b. 
IS] with respect to the part-whole relation r--. In the case of  a finite collec- 
tion S, [S] is iust the physical sum of its members. For example, if S = (a, b},  
then [S] = a + b. As for the totality T of  things, the physical sum of its 
members, i.e., [T],  is called the world or universe. In other words, the world 
is the aggregation of  all things. In short, we assume that (T, 4-) is a sup semi- 
lattice. 

Finally we postulate that every thing is the physical sum or aggregation of  
a set of  basic things. The basics can be particles, fields, or whatever physics 
may decide. We assume then that (i) there is a nonempty subset B of  T- the  
basics-such that, for each x in T, there is a unique subset B x C B such that 
x = [Bx] ; and (ii) the basics have no parts: for any x,  y E B, if x r- y then 
x =y.  Consequently we can restrict much of our discourse to the basics. In 
particular the aggregation function will be restricted to 2 B. Moreover by (i) 
above [ ] 1 2 B : 2 B -+ Tis a bijection. This restriction to basic things has the 
advantages of economy; in particular we need not refer again to the universe. 

3. States, Events, and Histories 

Every thing has a number of  properties in addition to its capacity to aggre- 
gate with other things. Whereas some properties (like energy) are frame dependent, 
others (fike composition) are frame invariant. We assume that every thing has 
a finite (though possibly very large) number of  properties with respect to 
any given reference frame. 

Every property of  a thing is representable by a (state) function. The collec- 
tion of  all properties of  a thing, relative to a given reference frame, can be 
construed as an n-tuple of functions, with as many components as properties 
are being represented. (We count every component of  a tensor and every 
component of  a complex function as a separate state function.) We call this 
n-tuple g: = ~ i l  1 <. i ~ n) the state func t ion  of the thing of  interest relative 
to the given frame of  reference. 

Every value of  Y is a (conceivable) state of the thing relative to the given 
frame. The set of  all such states is called the (conceivable) state space of the 
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thing. Each kind of  thing has its peculiar state space. Now, the components 
of a state function are subject to restrictions and are interrelated. These rest- 
rictions and interrelations are, respectively, the constraints and laws of the 
thing. As a consequence of such constraints and laws, not every conceivable 
state is a really possible, or lawful, state. The lawful states of  a thing x form a 
subset SL (x) o f  the conceivable state space of  x, namely, the lawful state 
space ofx.  (Because of  this restriction, SL (x) may fail to  be a vector space, 
whence n: is not  necessarily a vector.) 

Usually the state function ~: is a certain function from a certain domain 
D into R n. It is convenient and usual to take D to be the state space S(f)  of 
some standard thing or reference frame f, i.e., g:: S(f)  -~ Nn. In this way every 
thing state s is the value of U: for some state t of the frame, i.e., s = I: (t) for 
t in S(f).  (We need not go here into the characterization of  a reference frame. 
Suffice it to say that a reference frame is a thing of  a special kind, natural or 
artificial, allowing one to parametrize the states of  any things of  interest. A 
possible realization of  a reference frame is a clock mounted on a ruler.) 

Things are not  quiescent but rather restless: They undergo changes, events 
or processes. An event is defined in our system as a change of  state of  some 
thing. If  a thing x changes from state s to state s' along a curve g :  SL (x) 
SL(X) in its lawful state space SL(X), then the net change or event occurring in 
the thing is represented by the ordered triple (s, s', g) with s' = g(s). Every 
process occurring in x is representable by an arc of  curve in the lawful state 
space ofx.  Such arcs of  curve are called histories. More exactly, the full 
history of  a thing x relative to a frame f i s  

h(x) =dr {(t, F (t)} it E S(f)} 

Let us now characterize the notion of action or effect of  one thing upon 
another. Let x and y be two different things with state functions F and 13 
relative to a common reference frame f, and call 

h(x) = ((t, F(t))[tES(f)},  h ( y ) =  {(t,13(t))lt~S(f)} 

their respective histories. Further, let H = g(~:, 13) =~ (; be a third state func- 
tion depending on both F and (~, and call 

h(y Ix) = ((t, N (t))l t E S(f)} 

the corresponding history. Then we say that x acts upon y, or x [> y, if the 
modified trajectory differs from the free one, so that the total history is 

h(x) u h(y Ix) =/= h(x) U h(y) 

Finally the total action or effect o f x  o n y  equals the difference between 
the forced trajectory and the free trajectory of  the patient y, i.e., 

e(x,y) =dfh(Y Lx) C~ h(y) 

We shall use the concepts of action ( D )  and of total effect (e) in building 
our notion of  betweenness or interposition. 
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4. Time Order 

Consider the net events, or changes of  state, occurring in a certain thing x, 
i.e., disregard the intermediate steps between the initial and the final states. 
Each such net event is a pair of  states (s, s') E SL(x), and the totality of  such 
pairs is a set EL(x), included in SL(x) x SL(x), called the event space o f x  
relative to the given frame of  reference. And we denote by E'L(X) the set of 
proper events, i.e., EL(X ) minus the set of  identical state transitions s~+s. (The 
inclusion is proper because not all pairs of  states are really possible, i.e., 
lawful: Just think of  the conceivable but physically impossible transitions that 
violate any conservation laws.) 

Let s, s', s", and s"  be four states of  x, and let 

e = (s, s'), e' = (s", s'") 

be two events in x. These events can compose to form a third event in x just 
in case the terminal state of the first event coincides with the beginning of  the 
second. More precisely, we introduce a partial binary operation * on the 
proper event space E'L(x) such that 

(s, s") i f s '  = s" and s 4 = s"  

e r , e ,  = ] 

undefined otherwise \ 

The component events e and e' can be visualized as vectors in state space 
and the resulting event as the resultant or sum of those vectors. 

We stipulate next that event e precedes event e' if and only if e composes 
with e' to form a third event. In other words, we introduce a binary relation 
< in EL(x) as follows: Let e and e' be events occurring in a thing x with 

proper event space E'L(x). Then 

e < e' =rife * e' e E L ( x )  

This relation < is asymmetric and transitive just like < and C. Hence it is 
a strict partial orderbzg of EL(x ). This order is not absolute (frame free) but 
frame dependent, because EL(x ) itself is frame dependent. Moreover the event 
order is not connected: There are events in E},(x) that neither precede not 
succeed each other, as shown by the very definition of  the composition * of  
events. (Which is just as well, because that is exactly the case with events that 
are spacelike separated.) 

So much for preliminaries. 

5. Interposition 

We proceed to build our first geometrical notion, namely, that of  inter- 
position or betweenness. Since we cannot avail ourselves of any ready-made 
geometrical concepts, we must build our notion of  interposition exclusively 
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in terms of some of the notions characterized above. We choose as definers 
the concepts of thing (7), basic thing (B), of being a part of a thing ( r - ) ,  of 
one thing acting upon another (D) ,  and of the total effect of one thing on 
another (e). All of these concepts have been elucidated in the preceding. Our 
definition is implicit, namely, via the following postulate: 

Postulate 1. Let T be the set of things, B that of basic things, and 
R a ternary relation among things, Further, abbreviate "R holds 
between x,y, z in the given order" to x [y [z, where x,y, z E T. Then 
R is the interposgion (or betweenness) relation iff, for any u, v, x, y, 
z ~ T ,  
(i) x t y l z ~ x @ y ~ z q = x o r x = y = z  
(fl) x l y i z ~ z l y l x  
(if)  x [ y I z & u I x [ y & y [ z I v ~ u I y l v  
(iv) x 4 = y & x r - - y ~  ~(3z ) ( zET&x[z Iy )  
(v) yEB=~(3x)(3z)(x,  z E B  - {y}&xIy[z)  
(vi) x[y[z  &xDz=~(3u)  [uEe (x , y )&(Vv) ( vEe (x , z )~  

u < v)]; 

The formula x IY [z is interpreted as "y interposes (or lies between)x and 
z." The first clause states that the interposition relation holds either among 
different things or, trivially, for a single thing. The second, that the relation 
is symmetric in the outer variables. The third, that whatever interposes between 
two given things interposes also between two outer things. The fourth, that 
nothing interposes between the part and the whole. The fifth clause asserts 
that any basic thing can be "surrounded" by two other basics. (Obviously this 
does not hold for the universe-hence the restriction of the clause to basics). 
The sixth clause of  our axiom states that, i f y  interposes between 
x and z, and x acts on z, then some of the effects of x on y precede all of the 
effects o fx  on z. (This hypothesis can be best understood in terms of signals: 
I f y  interposes between x and z, and x acts on z, then any signal from x to z 
reachesy before it does z. But this reading is of course extrasystematic, for we 
have not characterized the notion of a signal.) 

The first three clauses seem intuitive. The fourth is a sort of physical inter- 
pretation of the second component of Hilbert's second axiom group for element 
ary geometry (Hilbert, 1899), namely, -'(x [y [y). The fifth is a sort of dual of 
Hilbert's fourth component of  the second axiom group-namely, that there is 
a thing lying between any two distinct things. The sixth clause 
exhibits, even more forcefully than the previous ones, the material basis of the 
interposition relation. Moreover it suggests that the latter could not be 
properly defined for a changeless universe. 

6. Separation 

There are several notions of separation. One of them is the topological 
notion of separation between sets (Wallace, 1941). We cannot use it because 
we wish to clarify the notion of separation between concrete things, not 
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between sets, which are constructs. Other concepts of separation are metrical 
or quasimetrica]. Any of these consists in a non-negative real-valued function 
d on an abstract set S obeying well known conditions. The members x and 
y of S are said to be separate iffd(x,y) ~ O. We cannot use these notions 
either, because it is not our purpose to compete with physicists by assigning 
precise quantitative measures to the separations among things. We need a more 
basic, qualitative notion of separation. We shall get it with the help of the 
concept of interposition. 

We define the separation between two things as the set of things that inter- 
pose between the given things. More precisely, we make 

Definition 1. Let B be the set of  basic things. The function a : 
B x B -+ 2 B such that 

o(x,y)  = {z E B  l x l z lY}  forx ,  y E B  

is called the basic thing separation. 

This definition,jointly with Postulate 1, entails the following consequence: 

Theorem 1. For any two basic things x , y  E B 
O) o(x,x) = (x) 
(ii) o(x ,y )= o(y ,x )  

Proof. The first part follows from clause (i) of Postulate 1. The second, from 
clause (ii). 

Note the analogy between the set-valued function a and the real-valued 
quasidistance and distance functions d mentioned at the beginning of  this 
section. But note also the dissimilarities, such as (i) and the frame invariance 
of  a, which contrasts with the frame dependence of  distances and quasidistances 

We now translate clause (iii) of  Postulate 1 : 

Theorem 2. For any basic things u, v ,x ,y ,  z E B, i f y  E o(x, z), 
x C a(u,y) and z E a(y,  v), t h e n y  E or(u, v) 

Proof By Postulate 1 (iii) and Definition 1. 
We could derive further theorems but we shall not need them for our 

purposes. What we do need is another property of the separation function, 
which the previous assumptions and definitions fail to entail. We must therefore 
postulate it: 

Postulate 2. Let x l , x2 , y  , z I and z 2 be basic things. I f y  E o(xt, Zl) n 
o(x2, z2) and x 1 :~ z 1, x 2 4= z 2, then there are basic things x 3 and z 3 
such that x 3 4= z 3 a n d y  E o(xa, z3) C o(xl, z l)  C3 o(x2, z2) 

We now have all we need to build the notion of  thing space: 

Definition 2. The set B of  basic things, together with the separation 
function o, is called the basic thing space. Symbol: 0 = <B, o>. 

In other words, what we call the "thing space" is nothing but the collection 
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of spaced things, or the co[lection of things related by their mutual separations. 
This is all the philosopher needs, for 0 has been built in terms of  a few extremely 
general (ontological or protophysical) concepts. We may call 0 a philosopher's 
space. 

7. Basic Properties of  Physical Space 

The thing space 0 introduced by Definition 2 may satisfy the philosopher, 
but not the mathematician or the physicist: It has too poor a structure to 
qualify as physical space. The least we must do is to topologize either the set 
B of  basic things or its power set 2 B. Fortunately the separation function a 
will do the trick. Indeed we have 

Theorem 3. The family of  sets of  basic things 

r = ( X E  2BI for a l ly  EX,  there are x , z  inB - (y} such that 
y ~ o(x,z) c x )  

is a topology for B. 

Proof. By Postulate 1 (v), B E r. Besides, it is obvious that q~ E r and that 
every union of  members of r belongs to r. Finally, by  Postulate 2, the inter- 
section of  any two elements of  r is also in r. Hence r is a topology for B. 

We shall assume that the set B of  basic things, equipped with the topology 
r, is equal to physical space: 

Postulate 3. The topological space 2 = (B, r) is equal to the physical 
(real, ordinary) space. 

However, we have so far little justification for assuming this hypothesis. 
For one thing we have assigned 2 no definite dimensionality, whereas we feel 
certain that physical space is three dimensional. For another we want ~ to be 
connected. These and other shortcomings will be remedied by foisting certain 
properties on E. That is, we shall force Postulate 3 to become true. 

To begin with, let us define, in the usual way, closures in 2;. I f  A E r, then 

C1 A =df (X E B [ for all V in r containing x, V N A 4: 4)}. 

For these closures to be of  any help, they must be large enough. This is 
ensured by the following postulate: 

Postulate 4. Every pair of  basics is in the r-closure of their separation. 
I.e., 

for any x,y E B, if e(x, y )  ~ ~ ,  then x,y E C1 o(x,y) 

By taking x = y, it follows immediately that every finite subset of  B is 
closed. In other words, we have the following: 

Corollary 1. The physical space E = (B, r) is a Tl-space. 

We need one more assumption to convert N into a Hausdorff (or T2) space. 
This step will be taken in the following section. 
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8. Further Properties of  Physical Space 

Let us recall that our goal is to endow 2 with the minimal set of properties 
demanded by contemporary physical theory. More precisely we wish to render 

a connected and metrizable space locally homeomorphic to ~ 3  More briefly, 
we want ~ to be a three-dimensional connected manifold, hence a locally 
Euclidean space. 

Now, it has been known for a long time that it is possible to express every 
theorem in Euclidean three-dimensional geometry with the sole help of the 
concepts of sphere and of inclusion. In fact these are the sole extralogical 
undefined notions in the set of postulates for elementary geometry proposed 
by Huntington (19 t 3). We shall adopt these postulates but, instead of taking 
the notions of sphere and of inclusion as primitive, we shall define them in 
terms of some of our previous concepts. This will endow Huntington's postu- 
lates with a physical (or rather protophysicat) interpretation and so will 
authorize us to claim that they characterize physical space (in the small). 

Our first task then is to define the concept of a sphere. We will define a 
sphere lying between two given basic things as the closure of the separation 
between those things. More precisely, we make the following definition: 

Definition 3. For any pair x, z C B of distinct basics, the spheres 
lying between x and z are 

Sxz ; {Clo(u, v) lu, v c B & ~ ¢ Clo(u, v) C a(x, z)) 

The minimal spheres are the points-which need not be "unextended." 
The set of minimal spheres will prove to be mappable on N 3. 

We now assume that our spheres satisfy Huntington's postulates: 

Postulate 5. For any given pair x, z E B  of distinct basics, the structure 
(Sxz, C), where Sxz ~ 25, satisfies (is a model o0  the Huntington 
(1913) postulates. 

Hence we have the following: 

Theorem 4. The nonempty separation a(x, z) between two distinct basic 
things x, z E B is homeomorphic to three-dimensional Euclidean space. 

Proof. The minimal spheres are the single points of o(x, z). By Huntington's 
(1913) Theorem 47, this collection can be topotogized in such a way that it is 
homeomorphic to R 3. Now, a basis for this latter topology consists of all the 
r-interiors of  elements of Sxz. Hence this topology is identical with the rela- 
tive topology of a(x, z). 

We are now justified in framing the following: 

Definition 4. Every member Cle(u, v) of the family of spheres Sxz 
lying between the things x and z is said to be a Euclidean ball. 

Remember now that physical space is a T1 space (Corollary 1). Since Postu- 
late 5 supplies regularity, we obtain the following: 

Corollary 2. E = (B, ~) is a regular three-manifold without boundary. 
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We have come near the goal. We shall attain it by adding one last assump- 
tion, namely, that any two basic things can be bridged by a string of spheres. 
More precisely, we assume the following: 

Postulate 6. The set B of basics contains two sequences xl ,  x2 . . . .  and 
zt, z 2 , . . ,  such that x i 4: zl for each i and, for every pair a, b in B, 
there is a simple chain 

a ~ G , C 2  . . . . .  C. s b  

such that every C/is of the form o(x/, z]). 

Finally we can prove what we wanted: 

Theorem 5.2; = (17, v) is a connected, second countable and metriz- 
able three-manifold without boundary. 

Proof. Being homeomoiphic to N 3, every o(xi, zi) is connected and Lindel6f. 
Hence, by Postulate 6, (B, r) is connected and Lindel6f. Now, every regular 
Lindel6f space is paracompact and every paracompact locally metrizable 
space is metrizable. Therefore (B, ~) is connected, Lindet6f, and metrizable. 
Finally, (B, z) is second countable because, in metrizable spaces, the properties 
being Lindel6f and of being second countable are equivalent. 

In other words, physical space is a three-dimensional connected manifold. 
And, because 2; is metrizable, the physicist may assign it an adequate (compa- 
tible) metric. We shall abstain from doing so because our goal was to build a 
concept of physical space broad enough that it might be used in the axiomatic 
foundations of any of the current physical theories. Besides, the theories of 
relativity have taught us that any attempt to assign space a metric, independently 
of time, is bound to fail: Only space-time can be assigned the proper metric. 

9. Comparison with Physical Geometries 

Why should we require 2; to have precisely the properties postulated or 
deduced in the previous sections? Why could we not have abstained from 
assuming some of them? why could we not hypothesize an entirely different 
set of properties for physical space? The answer to these questions depends 
upon the relation of one's philosophy with science, hence indirectly with 
reality. 

In a totally a priori philosophy, physical space can be assigned any structure 
whatsoever. For example, one could postulate-as Whitehead (1919) and Lucas 
(1973) have done in the wake of Kant-that physical space is globally Eucli- 
dean. On the other hand no such freedom exists in a philosophy that seeks to be 
continuous with science. In a science-oriented philosophy one requires the 
geometry of ordinary space to agree with physics. Moreover one lets physics 
have the upper hand. 

Now, current physics happens to assume that physical space is a three-dimen- 
sional differentiable manifold. (See, e.g., Trautman, 1965). This is necessary 
to write down the basic equations of contemporary physics-though usually 
insufficient to solve them. (We disregard here the speculative deviant theories. 
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If any of them were shown to be true then we would have to change our 
geometry.) Surely most theories require some additional structure, if not at 
the foundational level at least at the time of solving problems. For example, 
classical mechanics and nonrelativistic quantum mechanics require, in their 
usual formulations, that space be globally Euclidean; classical electrodynamics 
requires space to be affine (van Dantzig, 1935), and the relativistic theory of 
gravitation assumes that space, or rather space-time, is Riemannian. But the 
assumption common to all of these specifications is that physical space is a 
three-dimensional connected manifold. This being the minimal geometrical 
assumption, it should be a necessary and sufficient constraint for philosophy 
-unt i l  further notice. 

The geometry described in the previous sections is then compatible with 
the mainstream of contemporary physics. A new physics might call for a 
new protophysical geometry. Two radical changes of the sort have been 
suggested several times. One is that the spatial generalized continuum may 
have to be replaced by a discontinuous or atomic space with a fundamental 
or minimal length built into it. Another, that spaceAime may be fluctuating, 
our current metrics being sorts of statistical averages. However, none of these 
ideas seems to have been carried beyond the heuristic stage. The fact is that 
the theories actually employed by physicists make no assumptions about 
physical space contradicting our results. 

In sum, we may declare our protogeometry true because contemporary 
physics says so. But at the same time we should be prepared to see it revised 
or even revolutionized by new developments in physics. 

10. Concluding Remarks 

We have obtained a solution to the problem we set out to solve, namely, 
that of building a theory of physical space based on the concept of a changing 
thing. (This does not mean that changing things are more fundamental than 
space: Only the corresponding categories are ordered.) Ours is then a relational 
theory of physical space. 

However, ours is not the only possible theory of the kind. For example there 
is Basri's (1966) rigorous relational theory. But, because it admits only particles 
as basics, this theory violates the spirit of the two relativities, which have the 
field concept at heart. Besides, Basri's is a subjectivist theory because it is 
concerned with human observers and their sensations and operations: As such 
it is observer-bound rather than observer-free as all scientific theories are 
supposed to be. (For the latter point see Bunge, 1973.) 

Besides there is Penrose's (1971) rigorous and moreover objectivist relational 
theory of space. But, because it is based on the concept of angular momentum, 
it does not seem to be general enough to serve as a foundation for all physical 
theories. In fact there are things with no intrinsic angular momentum. Our own 
theory is, on the other hand, based on extremely general ideas, hence less sensitive 
to scientific change. 
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Our theory has one seemingly unsatisfactory feature, namely that it postu- 
lates that physical space is three dimensional instead of  explaining this fact. 
(This hypothesis is contained in Postulate 5.) This assumption may seem 
arbitrary. It is not,  for it is suggested by the actual behavior of real things: 
If things behaved differently, then physical space might not be three dimen- 
sional. In other words, the three dimensionality of  space is rooted in the known 
physical laws. (See, e.g., Penney, 1965.) What would the dimensionality of  
physical space be if things possessed ("obeyed")  laws different from those we 
know? This question can receive a partial answer, namely, along the following 
lines. Take for instance the pervasive processes of wave propagation and write 
out any wave equation in spherical coordinates in an n-dimensional manifold. 
Any such equation will contain a radial term with a factor (n - 1). So, if 
experiment were to show that wave propagations proceed according to, say, 
n = 2 or n = 4, we would have to conclude that physical space is two-dimen- 
sional or four-dimensional, respectively. But of  course this is not  the case. In 
short, experiment points, in however devious a fashion, to the three-dimen- 
sionality of  ordinary space. (Note by the way that, on a nonrelational theory 
of space, one would ask instead the question: What would things look like if 
space were not three-dimensional? But this question cannot be answered except 
dogmatically.) Hence in postulating that ordinary space is three-dimensional we 
just bow to experience. 
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